
Answering these six questions is a pretty good place to start.

1. **Who?** Who is participating?
2. **What?** What is happening? What has happened? What will happen?
3. **When?** When is it going to happen? When did something happen?
4. **Where?** Where is the action taking place?
5. **Why?** Why did these things happen?
6. **How?** How did something happen? What were the circumstances?

Bionics

Bionics is a creativity technique that works with inspiration from nature. With bionics you can search for examples, structures, methods and references from biology and transfer them to new solutions in product development. You can solve problems by using solutions given by nature. Turned around, you can also get inspiration from pictures of nature, and establish connections between the picture and your tasks. This approach is supported by the fact that evolution has been improving nature throughout history.

You can use bionics in developing:
- technical solutions
- structure of the product
- colours.

For more information: wikipedia (Retrieved 9 May 2007)

Brainstorming

Brainstorming is a method whereby new ideas are rapidly generated. Brainstorming is usually done in groups, but you can do it all by yourself too. The idea is to rapidly generate a variety of possible solutions (http://www.answers.com/topic/brainstorming). Any of the members can contribute new ideas but there are no strict regulations unless you want them. The atmosphere should be positive and uncritical. Every idea should be written down exactly as they are represented and

Craftopolis
they should not be criticized. Later on, the ideas can be studied and their usability evaluated more precisely. You may find a whole new idea and new approach to your current problem. Brainstorming is especially useful when planning new projects.

More details about brainstorming can be found at: (http://www.answers.com/topic/brainstorming)

Function analysis

This creativity technique is used to formulate the problem more generally in order to allow an open-minded view of a certain issue. You break down the problem and find the most important links (From: creativity.pdf created by Johanna Spath).

Headstand technique

Headstand technique means exactly what it sounds like, turning things upside down. When you have a problem that seems impossible, try to turn the problem around and approach it from a different perspective. For example: you eat in a restaurant – you do not eat in a restaurant. Then you can take the answers you got and turn them around again. From this information you could get some ideas for your original problem. (Source unknown).

Idea generating

Sit down, focus your thoughts and let new ideas burst out. There are no strict restrictions or rules; the only requirement is to generate new ideas. You can do it by yourself or in a small group. Take your time or do it within a limited timescale. It is important to remember that not all ideas are ground shaking types so do not gun them down too eagerly.

Lateral thinking

Edward de Bono wrote a book entitled *The Use of Lateral Thinking*, which was published in 1967. Normally, our brains work in an asymmetric way but the way we normally think is in a sense pretty straightforward. In lateral thinking it is not always necessary to find the right answer but to find new approaches. Some of the answers might sound ridiculous or provocative, but that is the point. Lateral thinking is like an exploratory expedition inside your own head.

"Exploring multiple possibilities and approaches instead of pursuing a single approach." (Edward de Bono)

For more information:
http://en.wikipedia.org/wiki/Lateral_thinking
Morphological analysis

Morphological analysis was originally invented by the Swiss Fritz Zwicky. Morphological analysis is a method whereby a given problem is observed through different dimensions. These dimensions include different kinds of solutions to the problem. The most common scenario involves the use of two or three dimensions. The dimensions are made up of many sub-elements, which belong to their respective domain (dimension).

The first step is to state the problem to be solved as concisely as possible. The second step is to collect all the information that might be of importance for the problem. The third step is to put all the information into a morphological box. A morphological box can be three-dimensional but it usually has only two dimensions. The fourth step is to systematically analyze all the solutions contained in the morphological box. This should be done carefully and with regard to the purposes that are to be achieved. The fifth step is to find the optimally suitable solutions. If it seems there are too many variables, you can simply cut out some of the not-so-essential ones.

(http://www.swemorph.com/ma.html and an unknown source)

<table>
<thead>
<tr>
<th>Possible Raw materials</th>
<th>Possible Shapes</th>
<th>Possible Colours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood</td>
<td>Round</td>
<td>Red</td>
</tr>
<tr>
<td>Plastic</td>
<td>Square</td>
<td>Green</td>
</tr>
<tr>
<td>Glass</td>
<td>Oval</td>
<td>Blue</td>
</tr>
</tbody>
</table>

An example of a morphological box. Highlighted text represents a possible solution to the given problem.

More details about morphological analysis can be found at:
(http://en.wikipedia.org/wiki/Morphological_analysis)

Six questions –method

The technique works by asking the questions **what? who? when? how? where? why?** concerning the problem that has to be solved.